
UI?C 538.4:534.222.2 

PMM Vol. 36. Ng5, 1972, pp. 866-873 

I. P. SEMENOVA and A. E. IAKUBENKO 

(Moscow) 
(Received February 11, 1972) 

Stationary one-dimensional electrohydrodynamic flows with shock waves in 
channels are analyzed for the case of an arbitrary interaction parameter. The 

criteria of existence of electrohydrodynamic flows with shock waves in which 

the electric field component normal to the wave front is continuous and that 

of existenceof flows with discontinuities of the electric field in the shock 

wave are derived. A diagram is constructed in the velocity-electric field 
coordinate plane which makes it possible to determine the feasibility of ob- 
taining one kind of flow or another by the velocity and the electric field 
intensity upstream of the shock wave front. An electrohydrodynamic shock 
adiabatic curve is constructed for a perfect gas. 

1. Let us consider the one-dimensional stationary flow of a compressible nonheat- 
conducting gas with a bulk charge in an electric field. We assume that the velocity of 
gas and the electric field are in the direction of the z-axis and that all parameters de- 
pend only on the s-coordinate. In this case the system of electrohydrodynamic equa- 

tions consists of the following integrals [l]: 
l3- 

fju = nt Z. con&, mu $- p -. 8n -- n -I= corlst 

(1.1) 
m (cJ + ‘;:24 + j,cp Y- E -.: const, j. z q (U + bE) = const 

where p is the medium density, u is the velocity (I( > o), p is the pressure, q is 

the density of the electric bulk charge (q > 0). E is the electric field intensity cc: is 
the electric potential, i,, is the electric current density, T is the temperature, and Cp 

is the specific heat at constant pressure. 
In our investigation of one-dimensional electrohydrodynamic flows with shock waves 

we shall use conventional gasdynamic methods by specifying the shock wave position 
at it: = E and, depending on the wave position, determine parameters at the channel 

outlet. In a supersonic stream the gasdynamic parameters can be specified at the chan- 
nel inlet, while for the electric field a boundary value problem is to be formulated 
(cp = 0 for .r -= 0, and q -. q* for ;z’ = L, where L is the channel length, and 
j0 is specified). Let us use Eq. (1.1) for deriving relationships at the shock wave. We 

have ‘Y. I?‘2 
plu, = fj2u2 7. m, mu, + p1 - +&- = mug -t pp - 8rr .= n 

m:(c,T, -1 l/,u,z) 7: m (cJ, -I- 1/2u22) : 1~~. j. : const (2.2) 

1’2 PER T2 

where subscripts 1 and ‘2 denote parameters ahead and behind the discontinuity Surface 

and cg is the gasdynamic energy. The last of Eqs. (1.2) is the equation of State. The 

condition of continuity of electric potential ($1 r-- (r2 was used in the derivation of 
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Eqs. (1.2) and the parameters upstream of the shock wave were assumed to be known. 

For obtaining an unambiguous solution of Eqs. (1.2) it is necessary to have one more 
relationship, since the number of unknowns appearing in (1.2) exceeds the number of 

equations by one. 

In a number of cases the condition of continuity of the electric field component El= 

E, normal for t = E to the wave front may be used as the required additional relation- 

ship. There are, however, cases in which the use of this condition results in a contradic- 

tion. In fact, when E < 0, j > 0, 9 > 0 and u > 0, the velocity in the shock wave, by 
Ohm’s law j = 9 (U + bE), may change to such an extent that in a continuous electric 

field 1~ -C bE changes its sign. This violates the condition of continuity of the electric 

current density component normal to the wave front. It was shown in l2] that in this case 

it is necessary to stipulate the fulfillment of condition u2 = -bE, downstream of the 
shock wave, which implies a discontinuity of the electric field normal component and 
the presence of a surface charge at the shock wave front. 

When j,, < 0 and 9 > u, it is always possible to use the condition of continuity of 

the electric field. In fact, if the inequality u + bE < 0 is valid upstream of the shock 
wave, it becomes even more stringent downstream of it, since the stream velocity de- 
creases during its passage through the shock wave. It is evident that for E > 0 it is 
always necessary to use the condition of the electric field continuity. 

2. Let us analyze the equations of system (1.2) which define the state at the shock 
wave. Eliminating in these p, p and T, we obtain [l] 

u2 _ 2: (II + E’vlzT) 

m 0 +I) ‘+ m(ri-1) g 
20-l) F. =-) 

(2.1) 

Note that Eq. (2.1) is independent of the mobility coefficient b. For fixed flow rate m 
and total momentum n Eq. (2.1) yields in the UE -plane (Fig. 1) a set of curves which 
depend on a single parameter. Lines /1/1 = 1 and M =- DC (M is the Mach number) 
are also shown in Fig. 1. The parabola IV = 1 at each of its intersection points with 

Fig. 1 
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curves of the set defined by (2.1) has a vertical tangent, with the exception of point D 
(a singular point of the saddle type) through which pass two singular curves of set (2.1). 

Let us define the physical meaning of curves (2.1). We select one of the curves of 

the set (2.1) by fixing parameter eg. Let a point of this curve relate to the state up- 
stream of the shock wave. All of ttie remaining points of this curve relate to all possible 
states downstream of the wave. The unambiguous selection of the state downstream of 

the shock wave requires that one of the two supplementary conditions, defined previously, 
be satisfied. To determine which of these conditions is to be used we eliminate from 

Eq. (2.1) parameter E by using the relationship u = - 6E. We obtain 

sv (Rg2V2 - 1) - Pg (V) = 0 

R, = *>1, v=$:E 

(2.21 

With known solution of the cubic equation (2.2) we can determine all parameters down- 

stream of the shock wave. In the particular case of ~7 -+ 0 we obtain the condition 

Pg (v) = 0 which corresponds to gasdynamic discontinuities. The polynomial P,J V) 
hastworoots V = 1 and V= Vg( 1. 

Let us qualitatively analyze Eqs. (2.2) and consider the behavior of function y = 

&i- Y2, where along segment 0 < V < 1 y1 = SV(Rq21J2-1) and ys=pe (v) . 

Along the segment 10, 11 function Y (V) 
changes its sign (Y (0) < 0 and Y (1) > 0, 
since ii, > 1). Hence along that segment the 

cubic polynomial (2.2) has always at least one 
real root. If ,C 2 1 + 1 / y:kf,2 (II < 0) , 
then, by the Descartes rule of signs the polyno- 

mial (2.2) has only one positive real root along 
the segment 10, 11. The caseof S < I+ 1 / 

‘&JI,2 (n > 0) is examined in detail below. 

Curves of y, and y, are shown in Fig. 2 for 

V various values of parameter R, (the solid line 

relates to R,-’ < V,, the dash line to 

R,-l = v,, and the dash-dot line to 

Fig. 2 fl,-r > v&4* 
When (R,-1 < Ve) Eq. (2.2) has only one 

root along segnxnr AB (R,-’ < V < V,) and’the surface charge density at the 

shock wave front is negative (0 = Ea - E, ( 0). Thus the use in this case of the 

condition us 7. - III:‘, downstream of the shock wave results in a physical contradic- 
tion, hence it is necessary to use here the condition of continuity of the electric field 

at the shock wave front. 
If (Ii,,-’ :: V,), then v = V, = R,-’ is the exact solution of Eq. (2.2). This 

SolUtic?Jl corresponds to a flow with a gasdynamrc shock wave in which the electric field 

is continuous and the condition us == - bEz is satisfied. 
f;inally, when (fi,-1 > Vs), Eq. (2.2) can have along segment BC either one or 

three real roots. 
i.et us prove that, depending on parameters S, R,, y and M , it can have three roots 
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along segment BC. To do this we chose parameters R, and M so that the abscissas of 

minima of curves ~1 and y, coincide. Since the equation y = y, is independent of S, 
hence by a suitable selection of S we can make curves y, and Y, tangent at the point 
of minimum, which corresponds to the presence of a multiple root of the cubic equation 
and, thus. proves the above statement. 

Let us represent the obtained results in the uE-plane. The parabola VB = -!?,,,-’ 

shown in Fig 1 by the dash-dot line is defined in variables u, E by the equation 

(2.3) 

In the &-plane the region lying outside parabola (2.3) (region (1) in Fig. 1) corresponds 
to parameters u and E upstream of the shock wave for which it is necessary to specify 

the condition of continuity of the electric field E, = E: as the supplementary equation. 

In this case there is only transition from the supersonic to the subsonic region. The region 

contained inside the parabola corresponds to such parameters u and B upstream of the 
shock wave for which it is no longer possible to use the condition of continuity of the 

electric field in the shock wave. The condition u2 = -bE2 may be used in this case 

as the supplementary equation. 
To make this clear let us consider in detail the particular case of relative position of 

curves M = 1, M = CO, V, =-&-a and 1~ = -bE shown in Fig. 1. which corresponds 

to a single root of polynomial (2.2) (each curve of set (2.1) intersects line u = --bB 
only once). Regions ABC and A&),C, (regions (2) ) are bounded by lines M = M, 
v, = -Ix*-‘, and curves of set (2.1) which pass through points A and Ai (the dash lines 
in Fig. 1). In regions (2) transitions with electric field discontinulties irom the supersonic 

region are possible into the subsonic region only. Points lying along segments A0 and 

A,F of line u = -bB correspond to states downstream of the shock wave, where the 

flow is subsonic. The direction of variation of stream parameters shown in Fig.1 by 

arrows conforms to that in [l]. Region AA,CIC (region (3)) corresponds to transition 

from supersonic states upstream of the shock wave to supersonic states downstream of the 
latter. Such transitions are nonevolutionary yZ]. 

Besides the configuration of curves M = i, M = CO, V, =--R,” and u = -bE, 

shown in Fig. 1, other relative positions of these curves are possible, which correspond to 

three roots of the cubic polynomial (2.2) (curves of set (2.1) can intersect the straight 

line u = --bE three times). Let us prove that in that case there can be only one sub- 
sonic root. It follows from (2.1) that for M < 1 the derivative uE’ is positive along the 
lines of this set. Line u = -bE has everywhere a negative slope, hence. if intersection 
exists in the subsonic region, it must be unique. 

It will be seen from Fig. 3 that for M < i the singular solution intersects line u = 

- bE for any values of the mobility coefficient b. Let us prove that cases in which 
one of the roots of Eq. 72.2) is subsonic and the other supersonic are possible. For this 
it will be sufficient to show that for M > i the singular curve of Eq, (2.1) intersects 

line u = -bh Let us take in the supersonic region an arbitrary point P of the singu- 
lar curve and draw a straight line from that point to the coordinate origin 0 . This line 

can be made to coincide with line u = - bE by a suitable choice of the mobility 
coefficient b (it is determined by the slope of this line). This is always feasible, since 
the equation of the singular line (2.1) is independent of b , It has been already shown 
that the singular solution intersects line u = -bB in the subsonic region only once 
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(point R) and, by definition, it must intersect that line in the supersonic region (point 
P), hence it must intersect the latter for a third time in the supersonic region (point Q). 

8, The above analysis can, also, be applied to the derivation of the shock adiabarlc 
curve in the &‘V-plane. The equations of conservation of momentum and energy pre- 
sented in dimensionless form are 

Eliminating MI* from Eqs. (3.1). we obtain 

p= ~+1-(~-I~~~-~S*(:-l)(l+i)(R*?i~~---1) 
(T’- f)V--(:-. 1) (3.8 

Equation (3.2) yields in eiec~ohydr~ynami~ a set of shock adiabatic curves which 
depend on two parameters S* and H, . In- 
vestigation of the shock adiabatic curve in 

eiectrohydrodynamics on the basis of condi- 
tion u, = -b& was performed in [3] with 
the assumption that KJ*~@ 1. This inequa- 

lity is, however, impossible, since H, sV2 is bounded from below by the ineqaiity 

J!.,z\‘s > n,-~t;~~> R~*(Y - I)‘ I (y + ijp 

and Ifzr, is always greater than unity. This assumption has resulted in wrong caocllurions. 

Setting in (3.2) lJ --: 1, we obtain P, = 1. - s* (7 - 1) (&’ - 1) which shows 

that rhe shock adiabatic curve (3.2). in this case, lies below the Hugoniot adiabatic curve. 
The adiabatic curve (3.2) has a vertical asymptote which coincides with thatof Hugoniot 
1’ 1** - (y - 1) / (y -1- 1). The behavior of the adiabatic curve for V < 1 
depends on parameters s* and &, . When I?,-” ( V*, the adiabatic curve (3.2) for 
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v* < v < i lies below the Hugoniot curve for any S*. As was shown above, the me 

of condition ~2 = -bh’i results in this case in the formation of a negative surface 
charge at the wave front for all v in the indicated range. This has no physical mean- 

ing, hence for R,-l < 0' if is necessary to use the Hugoniot adiabatic ctwe (line 

ABD’C in Fig. 4). When R,-’ > V* the Hugoniot adiabatic curve intenects the 

electrohydrodynamic adiabatic curve A’BD”C at point B (V = VI = f&-l). For 

V < V,. the electrohydrodynamic curve lies above the Hugoniot curve (sectlon BD”C 
in Fig. 4). Thus, for fixed parameters S* and R, and arbitrary M1 the shock adiabatic 

curve in electrohydrodynamics consists of two segments: one which for Y > v, coin- 

cides with the Hugoniot adiabatic curve (segment AB in Fig, 4). the other which for 

V < V, is determined by Eq. (3.2) (segment BD”C in Fig. 4). 
Let point A relate to the state upstream of the shock wave. We fix M, and determine 

v, (3.3) 

If Vg > VI, the parameters downstream of the shock wave are determined by conven- 

tionai gasdynamics formulas (point D in Fig. 4 corresponds to the state downstream of 
the shock wave). If v, < V1 (point D’ of the Hugoniot adiabatic curve), the state 

downstream of the shock wave is to be calculated by the adiabatic curve (3.2) and the 

equation of conservation of energy which is independent of parameters R, and S*. By 
drawing through point d the curve defined by the energy equation (line AD”D’Q) we 
obtain the point of its intersection with the adiabatic curve (3.2) (point D” in Fig. 4). 

Depending on parameters S*, R, and M,,as indicated above, there can be, generally 
speaking, three such points. In that case point D” corresponds to the state downstream 

of theshock wave. For a given M, it is possible to plot one more characteristic point 
on!he adiabatic curve, which corresponds to M, = i (point F) and at which V = 1;E. 

From the energy equation we have 

Setting M, = 1, we obtain v = 1’5. Points lying above point F relate to subsonic 
states downstream of the shock wave. It will be readily seen that in electrohydrodyna- 

mic shock waves the entropy always increases, 

Points lying to the right of point A’ correspond in electrohydrodynamics to discharge 
discontinuities, which are accompanied by transition from the supersonic to the super- 

sonic modes. Such transitions are nonevolutionary 131, and.in their presence a negative 
surface charge is generated at the shock wave front. The entropy at such discontinuities 
decreases, since the adiabatic curve (3.2) in this region lies everywhere below the Pois- 

son adiabatic curve. 
Let us determine the point of intersection of the adiabatic curve (3.2) with that of 

Poisson on PV’ = 1 in region V > 1. We have 

y (V) = s* VY (H,,“V - 1) + vu+1 - 1 + (v - 1) v (V-1 - i) / iJJ - 1) = 0 

This formula implies that for V > 1 and Y > 1 function y (v) is always positive and 

that Eq. (3.4) has no positive roots in the indicated region. Since for V = 1 the adia- 
batic curve (3.2) lies below the Poisson adiabatic curve, it must lie below the latter for 
all V :> 1. 
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4. In conclusion we present a brief summary of results of the above analysis, which 

may serve as a practical guide for numerical calculations of electrohydrodynamic flows 
with shock waves. 

Let us assume that the shock wave position is specified and that all parameters up- 

stream of the shock are known. These parameters are converted fo their dimensionless 

values s, R,, M, and vg. If R,-’ < Vg, the electric field at the shock wave is 

continuous and I’ == UP / u1 == v, is determined by formula (3.3). If fi,-’ >, l’g, 

the electric field at the shock wave is discontinuous and its intensity downstream of the 

wave is determined by the solution of the cubic equation (2.2). 

It was shown that the roots of this equation lie in the interval Tr, < 1’ < H;. 
If R,-’ < r/ v,, th en Eq. (2.2) has only one solution which corresponds to the transi- 
tion from the supersonic to the subsonic mode. When R,-’ > vrT/g , we can establish 

the following criterion of existence of a subsonic root of Eq. (‘2. A). For V 1-c the 

cubic polynomial (2.2) is negative, and for the existence of a subsonic root it IS neces- 
sary for this polynomial to be positive.when 1/’ 27 j/v,C. This leads to rhe condi tlon 
that 

(4 .I) 

Since Pg (1/V,) < 0 , condition (4.1) is always satisfied for small interaction para- 

meters s and there is always one subsonic root which is close to the gasdynamic roof. 
The othe; two roots correspond to V >-. 1 (they relate to discharge discontinuities). If 

condition (4.1) is not satisfied, all rilree roots Iic I 11 tile sllpersonicrei:ion,wilicil evidently 

implies that for such s, R, and fW ,stationary flows with shock waves do notoccur.lr 
the case in which condition (4.1) is satisfied the cubic equation. in spite of its subsonic 

root v = Y,, can have two more supersonic roots 1’? and V,. It was shown in p] that, 

when all three roots correspond to compression shocks, such snacks cannot exist, since 
they have no structure. This means that it is not enough to find the subsonic root, and 

that it is necessary to determine the other two roots in order fo check the fulfilment of 

condition Vi < ‘! (i -.- 2, 1;). 
The calculation of one-dimensional electrohydrodynamic flows with shock waves 

involves the integration of equations of motion [l] 

downstream of the shock wave with condition u = -6E satisfied and parameters ZJ’ 
and E’ tending to infinity. Expansion of the solution of Eq. (4.2) in the neighborhood 

of the singularity yields formulas for velocity and the electric field, which can be used 
in calculations of flows downstream of ihe shock wave in the vicinity of point X :-I E 

Since for .~~l < 1 we always have A > 0, hence such expansion is possible. 

The authors thank A.B. Vatazhin and G, A.Liubimov for useful discussion of this sub- 
ject. 
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The one-dimensional flow of a unipolarly charged gas between an emitter 

and a collector is considered for a given discontinuous variation of velocity 

in the working gap (e.g. in the presence of a gasdynamic shock wave and a 
small parameter of electrohydraulic interaction). The effects of position and 

intensity of the velocity discontinuity and of the difference of electrode po- 

tentials on the flow properties are determined. It is shown that solutions 

yielding zero surface charges at the discontinuity can only be obtained in a 
limited range of variation of determining parameters. (‘Illside that range in- 
numerable solutions yielding nonzero surface charges are possible. A classi- 

fication of solutions is made on the basis of conditions proposed in [I]. 

1. Let us consider a one-dimensional flow of unipolarly charged medium in the gap 

0 < X S L between flat electrode grids for the following velocity distribution: 

z = X!L, L’,. r const, r : I 

In a stationary one-dimensional motion of gas with a shock wave at point t ( r is then 

the ratio of densities at the shock wave) such distribution of velocity obtains in the case 
of small parameter of electrohydraulic interaction, if the electrical forces do not affect 
the gasdynamic flow pattern. 

The distribution of electric potential rp, electric field E = fix (z), and of bulk 

charge density 4 in the region 0 < .r < 1 without allowance for diffusion of charged 
particles is defined by equations 

oj” = -Q, q = i/(u- cp’), i = coast, E :_1 - ‘p’ (1.1) 


